
96 communications of the acm | march 2012 | vol. 55 | no. 3

Thanks to the affordability of personal
computing hardware and the usabili-
ty of GUI-based PC operating systems
(OSs), the vision of “a computer on ev-
ery desktop and in every home” came
to pass, putting the power of comput-
ing into the hands of nontechnical
users. Desktop OSs were originally de-
signed for an environment in which
computers truly were personal: they
were owned and used by a single user
or family, and the Internet had not yet
reached mainstream adoption. Users
trusted the code on their computers
because they installed software pur-
chased from reputable vendors, and
users did not worry about protecting
the confidentiality or integrity of their
data since PCs were largely single-
user. As a result, desktop OSs had ru-
dimentary or nonexistent protection
frameworks, and the major threat
they had to defend against was acci-
dental damage from buggy or miscon-
figured software. Windows, Mac OS,
and even Unix did not incorporate the
strong and sophisticated protection
systems that academia and industry
had developed over the prior decades,
since at best they were unnecessary
and at worst they hurt usability.

Fortunately, personal comput-
ers did not remain personal for very
long. Thanks to the Internet, users
began connecting their computers
to a worldwide network of billions of
other computers. Small software ven-
dors could cheaply distribute their
software to a global audience, and
users could use information-sharing
applications, such as mail clients or
P2P software, to share their files with
anybody, anywhere. Web browsers
and Web services have had stunning
impact, facilitating the publication of
and access to trillions of pages. Inter-
estingly, Web browsers have evolved
to become de facto OSs of their own,
as Web sites now deliver rich, interac-

tive JavaScript-based applications to
users on demand.

Unfortunately, this connectivity
has brought with it a host of security
headaches. Users now have to con-
tend with virus-laden software, glob-
al-scale worms that attempt remote
exploits of zero-day vulnerabilities,
and spyware that attempts to capture
and exfiltrate confidential informa-
tion. Protection systems for desktop
OSs have had to scramble to help ap-
plication developers and users defend
themselves against these threats.
Many of the ideas, abstractions, and
mechanisms developed in the context
of high-security, multi-user OSs are
now applicable to consumer OSs. For
example, Web browsers should now
be run in a sandboxed, compartmen-
talized environment: even if a remote
Web site is able to exploit a bug in the
browser, that site should not be able
to gain access to confidential data
from other sites the user is visiting,
or harm the files and programs on the
user’s computer.

In the following paper, the authors
describe Capsicum, their effort to
bring a capability-based protection
scheme to FreeBSD Unix. A capability
is an unforgeable token that gives its
possessor the right to access an ob-
ject or resource in a computer system.
Conceptually, a capability is the com-
bination of an identifier or name for
an object (such as a file name, the ad-
dress of a memory region, or a remote
network address) and access rights on
that object (such as the ability to read
the file, modify the memory region,
or exchange packets with the remote
host). Capabilities were first formal-
ized in a 1966 paper by Dennis and
Van Horn during MIT’s exploration of
multiprogramming and time-sharing
OSs, and since then, many academic
and industrial systems have refined
and extended their ideas.

Capabilities are a great fit for sand-
boxing; by restricting which capabili-
ties have been granted to an OS pro-
cess, it is possible to constrain that
process to access only the resources it
actually requires. For example, a Web
browser could be designed to launch
a process for each Web page the user
has open, and to use capabilities to
sandbox each browser process, grant-
ing it the ability to access cached data
and cookies associated with the page,
but preventing it from accessing data
from other sites or the user’s desktop.

The major challenge the authors
face is preserving Unix’s existing
APIs, legacy applications, and per-
formance, while simultaneously pro-
viding a path for developers to take
advantage of the strong compartmen-
talization and sandboxing potential
of capabilities. To have impact, Cap-
sicum needs to provide developers
with an incremental adoption path;
it should be easy to create sandboxes,
to identify the resources to which the
sandbox requires access, and to take
an existing codebase and make mini-
mal changes to it to use capabilities
and sandboxed environments.

It is too early to tell whether or
not Capsicum will succeed at having
substantial direct impact. But, in my
opinion, it has already succeeded by
picking the right problem to solve:
finding a way to apply the experi-
ences and ideas developed over the
past several decades of OS security re-
search to the systems that most users
actually use, in a way that minimizes
the effort and expertise required
from developers.	

Steven D. Gribble (gribble@cs.washington.edu) is an
associate professor in the Department of Computer
Science & Engineering at the University of Washington,
Seattle, WA.

© 2012 ACM 0001-0782/12/03 $10.00

Technical Perspective
The Benefits of
Capability-based Protection
By Steven D. Gribble

research highlights

doi:10.1145/2093548.2093571

